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Most MX diffraction data is measured at synchrotrons
from a sample held at 100 K ...

... a bit warmer than the
surface of Pluto

(33 — 55 K; average 44 K) ...

... and so a remaining frontier challenge

in structural biology is to determine
time-resolved (crystal) structures
directly from systems engaged in catalysis (function),
at physiological temperature and pressure

...... on earth
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PDB History Structural Biology Highlights

ILICr nalicv on data denngitinn nithlished &———— 1989 4 First NMR structure released in PDB: h
Section 8.6 Industrial inspirations from deeper s protein BDS-I (Driscoll et al., 1989) p Tt

insights into biology: Pharma to clean energy
>90% of all New Medical Entities (NMEs or drugs) PDB Replacement Cost

approved by FDA since 2010 used PDB models > US $1 5.6 billion
» 93% (184/210) have relevant structures in PDB Conservative cost
« 6% (13/210) have no known molecular target (assuming US$100,000 / atomic model)
* 5,914 unique PDB structures linked to NMEs 1 —— First B-DNA structure determined S \,a
g JpWaers 1% 1)

« ~ all targets released by PDB

» Median time between PDB deposition and FDA  °
approval > 10 years

Atomic Models Released by the PDB
15 July 21 July

) 2019 2020 A % A
* ~ $600 million invested (~ $100,000 / structure) T G 137,265 147,909 10,644 7.75
« > $100 billion public NIH funding (estimated 20%
NMR spec. 12,679 13,042 363 2.68

of NIH budget) + private-sector = > $700 billion
Westbrook et al (2020) Drug Discov Today 25, 837-850 3
Westbrook and Burley (2019) Structure 27, 211-217

5,368 575 54.92

PDB established &——

wwPDB consortium (2019) Nucleic Acids Res 47: D520-D528
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Figure 9.3: Growth of the PDB archive from Xray and cryo-EM methods
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Table 7.1: KEGG GENES Annotation Statistics (as of 17 May 2020)?
Protein-based genes RNA-based genes Pathway Enzyme
p enes
Category KO assi : linked g
gned KO assigned with EC
All genes genes b All genes genes b genes numbers
KEGG organisms 30,224,913 15,635,407 628,182 347,049| 8,700,385| 6,750,695
Brassica napus 96,972 31,875 65 64 17,171 13,133
Homo sapiens 19,855 14,264 2,641 336 8,039 3,363
Saccharomyces 6,002 3,793 415 394 2,399 1,311
cerevisiae
Escherichia coli 4,240 3,169 179 152 1,697 1,302
Viruses 367,122 10,122 5,500 24 N/A 5,235
Addendum 3,973 3,881 N/A N/A N/A 3,064

aSource: www.genome.jp/kegg/docs/genes _statistics.html

b Annotated with the KEGG Orthology (KO) system; the basis for cross-species annotation in KEGG. The set of genes in the
genome that can be mapped to KEGG reference pathways and BRITE reference hierarchies to generate organism-specific

pathways and hierarchies.




Figure 8.11: Some morphology of the COVID-19 virus
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NUMBER OF SAMPLES

Diamond / XChem and the COVID-19 Main Protease (MP™)

» Viral RNA encodes two open reading frames, generates two polyproteins pp1a and pp1ab

» These polyproteins produce most of the proteins of the replicase-transcriptase complex

» Processed by two viral proteases: Papain-like protease (PLP™) and 3C-like protease (main protease
(Mpre); both are primary target for antiviral drug development

» Diamond / XChem were early into this R&D effort with fragment-based library screening
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Global structural biology response to Covid-19

Atomic Models in PDB Sample Temperature Resolution Range
(22 July 2020 release date) (average) A

Cryo EM Total ~ 100 K (all cryo) 2.5-3.84 (3.31)
X-ray Crystallography Total 250 295 — 98 (11 room temp) 0.95 -4.36 (1.89)

Diamond Light Source 125 100 K 1.25 - 4.36 (1.78)
Total Number Released 299 100 K 0.95-4.36 (2.13)

LCLS proposals awarded XFEL beamtime in 2020 for Covid-19 R&D via rapid access process

P173 MFX 16 — 19 Aug Structural dynamics of SARS-CoV-2 3-Chymothrypsin-like Protease and its
(H. DeMirici et al) Inhibitor Complexes

P171 MFX 21 — 24 Aug Room Temperature Structure and Inhibition of the Coronavirus SARS CoV-2 Main
(M. Schmidt et al) Protease

P172 CXI 28 Aug — Time-resolved serial femtosecond crystallography studies on the endonuclease
(P. Fromme et al) 01 Sep NendoU protein of SARS-CoV-2

P175 MFX 18 — 21 Sep Time-resolved SFX of Covid-19 proteins including M-pro

(A. Orville et al)

P178 CXI 25— 29 Sep Coronavirus Viroporin Structural Studies
(B. Hogue et al)
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| G-Protein Coupled Receptor (GPCR) are critical to human health

Current GPCR Drugs:
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> GPCRs (2%) make >25% of all

-
Immune

(histamine, cytokine,

._sphingosine)

b
Metabolic

\glucagon etc.)

(parathyroid, THS, calcitonin,

o
Reproductive

(oxytocin, gonadorelin, etc.)

L

\ established clinical targets

J

1

New GPCR Drugs Needed:
» oral bioavailability

» subtype selectivity ‘

» functional selectivity

» allosteric modulation

> ~100 new preclinical targets
_ (new subtypes, new families,
orphans)




Figure 8.12: G-Protein Coupled Receptor (GPCR) crystal structures — most by XFEL methods
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Figure 7.8: Concepts of time-resolved structural biology

Traditional MX: synchrotrons, macro-crystals, 100 K, resting | | Serial MX at XFELs & Diamond (SFX & SMX)

state E, soaked E*S, or E*P; soaking or crystallization » study entire reaction cycles at room temp & pressure
lacks function and dynamics: >90% structures PDB / year « XFEL fs pulse = bond vibrations, photo-active reactions
Cryo_EM_' in solution, low Temp or freeze-quench = ms time * No radiation-induced damage to reactive intermediates
resolution, complements & benefits from MX, class « DLS /VMXi = ys time resolution with mixing strategies
averages, limited dynamics, no SpECtFOSCODiC confirmation . p_crysta| slurries = atomic & electronic structural data

Entering an era of dynamic structural biology... a concept, a set of tools, to collect as much data as possible
from every sample and X-ray pulse, enables atomic resolution “movies” of macromolecules engaged in catalysis

AIM: Within 5 — 10 years, routine molecular movies via serial MX at all XFELs & synchrotrons



-
o
o

Crystal Size Impacts the Surface Area:Volume Ratio The driving hypOthesiS for generalized

- o EE o - time-resolved serial uMX (section 7.3 & Figure 8.4)
gt

o
©
S

o
o)
S

# T4 Lysozyme

&  56% solvent
~ PDB code
: 253L

o
~
o
[ ]

use enzyme microcrystals
= 5um : : (~2x2x2 um3 and smaller)

o
fo)
S

- 180u:m : substrate(s) diffusion = um / ps,

will equilibrate in ~ ys — ms
average enzyme reaction in
solution is ~ 60 ms

0.00 : Thus, many times faster than

0 50 100 150 200 260 300 350 typlca| reaction CyC|e
Unit Cell Edge Lengths (A)

Examples of Producing Homogeneous Slurries via: Some key considerations:

Dielectrophoretic Sorting Crystallization in Emulsion Droplets * Space group / Crystal packing
(Abdallah et al (2013) ACS Nano 7, 9129-9137) (Heymann et al (2014) IUCrJ 1, 349-360) « Lattice channels / Access to

V active site(s)
?;:,, -~

High
 Viscosity / Ligand diffusion rate
Feor F Large particles > VE? Eoi X ’ : -.‘A X . .
o - : = X0 . e * Dynamic change(s) -vs- Lattice

* pH/lons/ Co-substrate(s)
N T > Precipitant . AN
| ._ BV (4 packing constraints
\ i DT 2 DS DO Schmidt, M. (2017)
b Methods Mol Biol 1607, 273-294

o
~
o

|

Fraction of Unit Cells on Crystal Surface
3

o
PN
[ ]




| Figure 7.4: Acoustic tape drive system for time-resolved SFX and XES experiments
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| Figure 7.3: Two phytochrome photosensors: enablers of Optogenetics
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Dr-BphP photocycle and crystal structures
suggest large conformational changes
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Single Particle Imaging (SPI) at \deal test samples are
. . often highly symmetric
physiological temperature e
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Relative Radial Density

SPI 3D conformational movie with imposed icosahedral symmetry

Occupancy p(r) vs. Conformation Reddy et al (2019)
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| SPI 3D conformational movie without imposed icosahedral symmetry

Occupancy p(7) vs. Conformation Evolution of 3D Relative Density
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Figure 3.7: 3D structures revealed by conformational analysis of 37,550
single-particle X-ray snapshots of the PR772 virus grouped by
conformational parameter

Relative density 30 nm

0.2 0.4 0.6 0.8 1.0

The last four frames of a 50-frame movie showing the conformational changes in the PR772
virus. The movie was compiled from experimental single-particle XFEL snapshots. Note the
accumulation of viral content near the fivefold portal, from which a tubular structure emerges.

1 1

Hosseinizadeh, et al. (2017) Ourmazd, A. (2019)
Conformational landscape of a virus by single-particle X-ray scattering Cryo-EM, XFELs and the structure conundrum in structural biology
Nat Methods 14, 877-881 Nat Methods 16, 941-944



‘ Summary for Life Sciences

Activities happening now Figure 9.4: Interactions between
- XFEL Hub at Diamond focusing on life science applications the XFEL Hub at Diamond and
Concepts & preliminary data (Diamond &/or XFELs) = proposals for XFEL the UK life science communities

beamtime - SFX data collection - data analysis - report(s) = follow-on R&D
» Travel assistance to UK life scientists awarded XFEL beamtime
« BAG access “Dynamic Structural Biology at Diamond & XFELS”
124 & VMXi with fixed targets, LCP / viscous media extruder, on-demand
acoustic injectors; pump-probe & mixing for time resolved studies

Activities with completion within ~ 1 — 5+ years
e Serial MX at Diamond / VMXi and at Kinetic MX at Diamond ||

 Collaboration with SwissFEL for SFX sample delivery at Cristallina
 Collaboration with European XFEL for SFX sample delivery at SPB/SFX

Prospects for UK XFEL and longer-term outlook
 Biology is a large and high-impact area at all synchrotron and XFEL facilities
» The strongest current cases of XFEL use in the life sciences include SFX, time-
resolved SFX and time-resolved single particle imaging (SPI)
« Dynamic structural biology & molecular movies of function will become routine at Diamond, Diamond Il & XFELs
A frontier opportunity: extend SPI methods of biomolecules in solution, to enable studies of nearly all dynamic
processes with high temporal and spatial resolution.






